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The vorticity jump across a flow discontinuity 
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Expressions are obtained for the jump in vorticity across a discontinuity surface 
which is not a contact surface. Admitting arbitrary motion of the fluid and the 
discontinuity, the most general of these is established on a purely kinematical 
basis. More specific expressions are obtained by successively enforcing the 
momentum equation of the flow and the conditions of conservation of mass and 
momentum across the discontinuity. Eventually Hayes’s (1957) result for a 
gasdynamic discontinuity is recovered. 

1. Introduction 
Hayes (1957) has derived an expression for the vorticity jump across gas- 

dynamic discontinuities, such as shock waves, which is of rather general validity 
and includes as special cases all previous results of the same type. The dis- 
continuity surface, embedded in the unsteady, inviscid flow field of an otherwise 
completely unspecified fluid, may move in an arbitrary manner, while, across the 
surface, conservation of energy is not implied, only conservation of mass and 
momentum. The purpose of this paper is to establish, on a purely kinematical 
basis, a vorticity jump formula of complete generality. By introducing the 
appropriate dynamical equations and the condition of conservation of mass we 
obtain from this formula a series of generalizations of Hayes’s result. Thus, for 
example, one can account for impulsive forces acting on the ffuid when it crosses 
the discontinuity. 

It is evident from the analysis of Hayes (1957) that the task of computing the 
vorticity jump across a gasdynamic discontinuity is greatly facilitated by 
employing a reference frame in which the discontinuity is a normal one. The most 
general expression which can be obtained in this way extends Hayes’s result to 
include the effect of an extraneous force field and a normab impulsive force (Berndt 
1966). In  the present case, where we must allow for a tangential velocity jump, 
there is no reference frame of the type required, and hence one would expect 
considerable complications to arise. It turns out, however, that the simplicity of 
the previous analysis is retained by the simple stratagem of using simultaneously 
two different frames of normal flow, one for each side of the discontinuity surface. 

2. Kinematical considerations 
W3 shall be concerned with fields, in three-dimensional Euclidean space, which 

have jump discontinuities across a surface S of continuous curvature and smooth 
motion, but which are otherwise continuously differentiable outside S ,  as well as 
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on the two faces of S. In  computing jumps across S,  at a point P and time t ,  the 
analysis will be purely local, so it is sufficient that the foregoing description is 
valid in a neighbourhood of P and t. 

Introducing the unit normal vector n of S, a continuously differentiable 
function of distance along S, we shall denote by [a] the jump of any quantity a,  in 
crossing Sin  the sense of n. The normal and tangential parts of a vector a at S will 
be denoted by a, or a, n, and a,, respectively. 

Our strategy when determining the vorticity jump will be to express it in 
terms of such quantities as appear naturally in the laws of conservation across 8, 
primarily the flow velocity. We shall accept derivatives of such quantities only 
to the extent that they can be evaluated without leaving S. 

The vorticity jump [<I is independent of the motion of any rigid frame with 
respect to which the vorticity < is defined. As indicated, we shall be using two 
different rigid frames for the flow at P, one for each side of S.  If u is the flow 
velocity and curl u the vorticity with respect to such a local frame, then 

where w is the angular velocity of the local frame with respect to some common 
frame. We shall need only the tangential part of (1) )  since the normal part of the 
vorticity jump can be readily obtained in the proper form. Indeed, the definition 
of vorticity as a circulation integral implies that 

where Curl is the curl operator in S ,  and v is the flow velocity with respect to a 
common frame. 

In order to obtain an expression for the tangential part of [<I we shall employ 
the kinematical vector identity (as did Uberoi, Kuethe & Menkes 1958) 

where D denotes material differentiation. So as to remain in S in evaluating the 
gradient we can only use the tangential part of (3). The tangential part of the 
acceleration Du can be accepted since it is related to the force and pressure 
distribution along S. 

For complete simplicity we choose the local frame on either side of S to move 
in such a way that the tangential velocity us vanishes at a point Q, fixed in the 
frame: Q, as it moves, remains in S and a t  time t coincides with P. In  addition we 
assume that the frame turns in such a way that the normal n at Q remains fixed 
with respect to it. Except for rotation around n a t  Q, this prescription determines 
uniquely two local frames, one on each side of S ;  they move relative to each other 
if there is a jump in us, but at time t they effectively coincide. 

At Q then, where the contribution of us to the tangential part of gradu2 
vanishes, equation (3) yields the simple expression 

for the tangential part of the acceleration. Here Grad is the gradient operator in 
X, while cur1,u is the tangential part of curlu. Taking jumps a t  P and t ,  and 
noting that [u,] = [v,], we find that 

[<I = l-C~1UI + 2[01, (1) 

[<,I = Curl[vsI, (2) 

Du = au/at + grad *u2 - u x curl u, (3) 

(Du), = u,(Grad u, - n x curls u)  (4) 

  curl,^] = n x ([(Du),/u,] -Grad [v,]), ( 5 )  
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provided the normal velocity component u, is different from zero on both sides. 
Finally, from (1) and (2) we obtain a formula of the type required: 

[<I = n x {[(DU)~/U,] -Grad [v,]}+ Curl [v,] + 2[ws] at P and t .  (6) 

This completely general expression for the vorticity jump is of a purely kine- 
matical origin. It owes its formal and conceptual simplicity to our special choice 
of local reference frames for the acceleration of the flow on either side of S. 

3. Dynamical considerations 
Turning now to the dynamics of the flow, we first introduce the momentum 

equation for inviscid flow a t  either side of S. Let a and o be the acceleration of 
Q and the angular velocity of the local frame with respect to an inertial frame, 
respectively. We then have at  Q 

(7) 
1 

P 
Du+-gradp = f - a + + u , n x o ,  

where p and p are the density and pressure of the fluid and f is an extraneous 
force field (force per unit mass). t Considering tangential parts only, we obtain at 
P and t 

to be substituted into (6).  Hence it follows that the vorticity jump at P and t is 

[(Du)S/unI = -[(‘/Pun)Grad~I+[(f,-a,)/u,I+2nx [wsl ( 8 )  

[GI = n x {[(llP) Gradml- [(l/m) Grad (P + mu,)l+ [P(fs- as)/mI} + Curl [Vsl, 

(9) 

where, in anticipation of the conservation conditions across S ,  the flux density of 

(10) 
mass, 

and of normal momentum, mu,, have been introduced. This expression for “ 5 3  
is still quite general, however; it  does not imply conservation of either mass, 
momentum or energy across S. 

Next assume conservation of mass. Then m must be continuous across S ,  and 
(9) simplifies to 

m = Pun, 

[<I = n x  ([l/p]Gradm+[p(fs-as)]/m}- ( l /m)nx  GradF? 

+ Curl (Fs/m) at  P and t ,  (11) 

where F = b-tmu,] n+m[v,] on S at t .  (12) 

In  considering the balance of the flow of momentum across S ,  with inviscid flow 
on either side, we realize that F should be interpreted as an impulse per unit area 
and time received by the fluid in crossing X (if this occurs in the sense of n). This, 
then, is the vorticity-jump formula relevant to the flow across an ‘actuator disk ’, 
a wire gauze, or an electromagnetic shock wave. 

For ordinary gasdynamic discontinuities we have F = 0. The local frames are 
then identical, and the vorticity jump simplifies to (Berndt 1966) 

[<I = nx{[l/p]Gradm+(f,-a,)[p]/m} at P a n d t ,  (13) 

t For full generality pf might be taken to include the divergence of a viscous stress tensor. 
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i f f  is continuous. For f = 0 this is essentially the formula obtained by Hayes 
(1957), as is seen by expressing a, in terms of the motion of the fluid and the 
discontinuity surface with respect to an inertial frame. 

We have not assumed conservation of energy across X (so the results are still 
valid, should there be an impulsive heat addition to the fluid when it crosses S). 
However, by employing the conservation of energy, we can eliminate the pressure 
from (9) or (11) without having to consider the normal momentum balance. This 
is done by introducing the thermodynamic law connecting the pressure gradient 
with the gradients of enthalpy and entropy, which means that we bring the 
thermodynamic properties of the fluid into the picture. The resulting expression 
for the vorticity jump (Berndt 1966) generalizes earlier results obtained from 
Crocco’s vorticity law. 
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